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Abstract. We derive the general expression of the conformally covariant energy-momen- 
tum tensor. 

In a previous work we proposed the conformally covariant energy-momentum tensors 
for the fields of spin 0, 1 and i, in terms of which other conformal currents can be 
expressed (Xu 1981). We shall now derive a general expression of the conformally 
covariant energy-momentum tensor by starting from the general form of the Lagran- 
gian from which the field equations are conformally covariant. 

The conformal group consists of the following transformations 
(i) inhomogeneous Lorentz transformations 

x: = ALx, +a, (1) 

x:. =px, (2) 

x: = (x, + c,x2)/sz sz=1+2cx+c2x2 .  (3) 

(ii) dilatation transformations 

(iii) special conformal transformations 

It has been shown that a set of fields & (x) belonging to a linear representation of the 
inhomogeneous Lorentz group behave under the conformal transformations as (Isham 
et a1 1970) 

1/4 

4&W)  = I det - ax1 D!(Nx))4p(x) (4) 

where 

-114 dx :. 
AWv(x)= det- - I d x l  ax” 

and 1 is the conformal weight of the field ~ $ ~ ( x ) .  For the special conformal trans- 
formations, hence we have 
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If , , ,  denotes the usual spin matrices which satisfy the following relation 

Since the A, , (x)  depends upon x,, the ordinary partial derivative a,+,(x) is not 
conformally covariant 

(9) 

d i  = g i  + ~ ( c , x ”  -x,c‘). ( 1 0 )  

1-1 A J L ~ & ( x ‘ ) = ~  d,D,” a& +2CAIf , ,40 - 2 1 ~ ~ 4 ,  

where 

Now let us examine the transformations of the Lagrangian. Suppose 2(&, a&,) to 
be Poincark invariant as well as dilatation covariant, then the Lagrangian under the 
special conformal transformations becomes as (Flato et a1 1970) 

where 

a 2  =- 
a a d ,  

We restrict ourselves to the case of RA = 0 or RA = ahR. R is some scalar function of 
fields &(x), and has the conformal weight 1~ = -2. The field equations will thus be 
conformally covariant. The canonical energy-momentum tensor 

transforms as 

so T,” is not conformally covariant. In order to cancel the nonconformally covariant 
terms in equation ( 1 4 ) ,  we may add to T,,, some extra PoincarC covariant terms such as 

and redefine the energy-momentum tensor e,, as 

e,,, = T,, + a  aA[(r;ifyOl + T ~ I C A ,  + I T Z I E A ,  )4@I 
+ b (g,,, 8’ - a, a,)R. 

The constants a and b in equation (17) are determined in such a way that e,, is 
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conformally covariant. On using the above special conformal transformation proper- 
ties, we can obtain the transformations of equations (15) and (16) respectively as 

~’^E(TYIE,,, +T;IL + T ~ I E ~ ~  )4bI 
= f14dfD;Di(drIE, ,  + d z I f p a  +dzIE,) a ^ ( ~ & )  

+4cATzIfA,4P + ~ C , T ‘ ~ I E A ~ ~ ~  

and 

(g,,, a’’ -a:, 
=C14(g,, a2-ddP,db a,, a A ) R  +6g,,,cA aAR -6c, a,R -6c ,  a,R. (19) 

For the massless field of spin 0 ( R  = -&#J’) and that of spin 3, 1 (RA = 0), the last term in 
equation (18) is identical to zero. Therefore we can verify from equations (14) and 
(17)-(19) that 

(20) a,, = T,,, -iaA[(~:~Evo + T E I ! ~  + T;I&, ) 4 P ~ - i ( g , u  a 2 -a, a , ) ~  

is conformally covariant, and has the properties 

a*@,,, = 0 a,, = a,, 0 ; = 0 .  

Equation (20) gives the general expression of the conformally covariant energy- 
momentum tensor. 

I should like to thank Professor A 0 Barut for useful discussions. 
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